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Motivation for this project

How are galaxies related to the dark matter density field?

We have several tools for this purpose ...

?

Hubble deep field Millenium simulation
Springel et al. 2005



Three Dark Matter Probes
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The galaxy stellar mass function :
• Number of galaxies per unit volume
• “easy” to calculate
• Typically modelled through “abundance matching”

1

θ [arcseconds]

w
(θ

)  
[d

im
en

sio
nl

es
s]

Galaxy auto correlation function  :
• Excess probability above random of finding two 

galaxies with a given separation
• Typically modelled through HOD models
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y Galaxy-galaxy lensing :
• Measures the galaxy-matter correlation function
• Weak signal that is difficult to measure
• Tells us directly about the galaxy-dark matter 

connection
3



Combining multiple Dark Matter Probes

Most studies so far have only ever used one type of probe 
to study the link between galaxies and dark matter.

Nonetheless, each probe contains different information.  
Combining probes makes sense in order to understand 
the beast : 
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The galaxy-dark matter connection
• Building a more robust probe
• Galaxy formation
• Informing semi-analytic models

Cosmological parameters: Ωm, σ8

Yoo et al. 2006,  Cacciato et al. 2009      the combination 
of lensing and clustering is a cosmological probe.

Modified gravity as an alternative to Dark 
Energy
Φ: dynamics
Ψ+ Φ: lensing of light around galaxies
       Screening mechanisms on linear, quasi linear scales. 
Need to understand the galaxy-dark matter connection.

Motivation for combining dark matter probes
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Theoretical Framework



Halo Occupation Distributions (HOD)

We have developed the theoretical framework necessary 
to combine galaxy-galaxy lensing, galaxy clustering, and the 
galaxy stellar mass function

Our model is an extension to the HOD framework

Our model enables us to:

- self consistently model the three observables
- Fit for the stellar-to-halo mass relation (SHMR)
- account for intrinsic scatter and measurement error
- fit data from multiple probes while allowing independent 
binning schemes for each probe



The Stellar-to-Halo mass relation (SHMR)

Stellar mass
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P(M*|Mh) is lognormal with :
- a mean relation: fSHMR

- a logarithmic scatter: σlogM*

σlogM*
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TABLE 3
Binning scheme for the g-g lensing

g-g bin1 g-g bin2 g-g bin3 g-g bin4 g-g bin5 g-g bin6 g-g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In Paper I we described a HOD-based model that can
be used to analytically predict the SMF, g-g lensing,
and clustering signals. A key component of this model
is the SHMR which is modelled as a log-normal prob-
ability distribution function with a log-normal scatter3

noted σlogM∗
and with a mean-log relation that is noted

as M∗ = fshmr(Mh).
For a given parameter set and cosmology, fshmr and

σlogM∗
can be used to determine the central and satel-

lite occupations functions, 〈Ncen〉 and 〈Nsat〉. These are
then in turn used to predict the SMF, g-g lensing, and
clustering signals.

4.1. The stellar-to-halo mass relation

Following Behroozi et al. (2010) (hereafter “B10”),
fshmr(Mh) is mathematically defined via its inverse func-
tion:

log10(f−1
shmr(M∗)) = log10(Mh) =

log10(M1) + β log10

(

M∗

M∗,0

)

+

(

M∗

M∗,0

)δ

1 +
(

M∗

M∗,0

)−γ −
1

2

(13)
where M1 is a characteristic halo mass, M∗,0 is a charac-
teristic stellar mass, β is the faint end slope, and δ and γ
control the massive end slope. We refer to B10 for a more
detailed justification of this functional form. Briefly, we
expect that at least 4 parameters are required to model
the SHMR: a normalization, break, a faint end slope and
a bright end slope. In addition, B10 have suggested that
the SHMR displays sub-exponential behaviour at large
M∗. This is modelled by the δ parameter which leads to
a total of 5 parameters. Figure 3 illustrates the influence
of each parameter on the shape on the SHMR and fur-
ther details on the role of each parameter can be found
in § 2.1 of Paper I.

In contrast to B10, however, we do not model the red-
shift evolution of this functional form. Instead, we bin
the data into three redshift bins and check for redshift
evolution in the parameters a posteriori. We also assume
that Equation 13 is only relevant for central galaxies.

4.2. Scatter between stellar and halo mass

The measured scatter in stellar mass at fixed halo mass
has an intrinsic component (noted σi

logM∗

), but also in-
cludes a stellar mass measurement error due to redshift,
photometry, and modeling uncertainties (noted σm

logM∗

).
Ideally, we would measure both components but unfortu-
nately we can only constrain the quadratic sum of these

3 Scatter is quoted as the standard deviation of the logarithm
base 10 of the stellar mass at fixed halo mass.

two sources of scatter. Nonetheless, given a model for
σm

logM∗

, we could in principle extract σi
logM∗

from σlogM∗
.

Previous work suggests that σlogM∗
is independent of

halo mass. For example, Yang et al. (2009) find that
σlogM∗

= 0.17 dex and More et al. 2009 find a scat-
ter in luminosity at fixed halo mass of 0.16 ± 0.04 dex.
Both Moster et al. (2010) and B10 are able to fit the
SDSS galaxy SMF assuming σlogM∗

= 0.15 dex and
σlogM∗

= 0.175 dex respectively. However, these results
are derived with spectroscopic samples of galaxies. In
contrast to these surveys, we expect a larger measure-
ment error for the COSMOS stellar masses due to the
use of photometric redshifts. In addition, since photoz
errors increase for fainter galaxies, we might also expect
that σm

logM∗

(and thus σlogM∗
) will depend on M∗.

To test if the assumption that σlogM∗
is constant has

any impact on our results, we implement two models for
σlogM∗

. In the first case (called “sig mod1”), σlogM∗
is

assumed to be constant (this is our base-line model). In
the second case (called “sig mod2”), we explicitly model
σm

logM∗

to reflect stellar mass measurement errors. Note
that the goal of this exercise is not to perform a careful
and thorough error analysis, but simply to build a realis-
tic enough model to asses whether or not a M∗ dependant
error has any strong impact on our conclusions.

For the sig mod2 model, we consider three contribu-
tions to the stellar mass error budget. The first is called
“model error”: this is measured by the 68% confidence
interval of the mass probability distribution determined
for each galaxy by the mass estimator. It represents the
range of model templates (each with its own M/L ratio)
that provide reasonable fits to the observed SED. This
range is determined both by degeneracies in the grid of
models used to fit the data, as well as by the photometric
uncertainty in the observed SED. The second term is the
photo-z error, which derives from the uncertainty in the
luminosity distance owing to the error on a given photo-
metric redshift. The final component is the photometric
uncertainty from the observed K-band magnitude, which
translates into an uncertainty in luminosity and therefore
stellar mass. The total measurement error, σm

logM∗

is the
sum in quadrature of these three sources of error. The
results are shown in Figure 4 for the three redshift bins.

As detailed in § 5, however, we find that our re-
sults are largely unchanged, regardless of which form
we adopt for σlogM∗

. This can be explained as fol-
lows. Since the data are binned by M∗, the observ-
ables are in fact sensitive to the scatter in halo mass
at fixed stellar mass, noted σlogMh

. Given a model for
the SHMR, σlogMh

can be mathematically derived from
σlogM∗

. Further details on the mathematical connec-
tion between between σlogM∗

and σlogMh
can be found

Adopted from Behroozi et al. 2010

For central galaxies :
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The Stellar-to-Halo mass relation (SHMR)
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Ten Parameter Model

+ Tinker et al. 2008 halo mass function
+ Tinker et al. 2010 bias function
+ Halo exclusion

 Parametric form for the stellar-to-halo mass relation (M1, M*0, β, δ, γ)
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TABLE 3
Binning scheme for the g-g lensing

g-g bin1 g-g bin2 g-g bin3 g-g bin4 g-g bin5 g-g bin6 g-g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In Paper I we described a HOD-based model that can
be used to analytically predict the SMF, g-g lensing,
and clustering signals. A key component of this model
is the SHMR which is modelled as a log-normal prob-
ability distribution function with a log-normal scatter3

noted σlogM∗
and with a mean-log relation that is noted

as M∗ = fshmr(Mh).
For a given parameter set and cosmology, fshmr and

σlogM∗
can be used to determine the central and satel-

lite occupations functions, 〈Ncen〉 and 〈Nsat〉. These are
then in turn used to predict the SMF, g-g lensing, and
clustering signals.

4.1. The stellar-to-halo mass relation

Following Behroozi et al. (2010) (hereafter “B10”),
fshmr(Mh) is mathematically defined via its inverse func-
tion:

log10(f−1
shmr(M∗)) = log10(Mh) =

log10(M1) + β log10

(

M∗

M∗,0

)

+

(

M∗

M∗,0

)δ

1 +
(

M∗

M∗,0

)−γ −
1

2

(13)
where M1 is a characteristic halo mass, M∗,0 is a charac-
teristic stellar mass, β is the faint end slope, and δ and γ
control the massive end slope. We refer to B10 for a more
detailed justification of this functional form. Briefly, we
expect that at least 4 parameters are required to model
the SHMR: a normalization, break, a faint end slope and
a bright end slope. In addition, B10 have suggested that
the SHMR displays sub-exponential behaviour at large
M∗. This is modelled by the δ parameter which leads to
a total of 5 parameters. Figure 3 illustrates the influence
of each parameter on the shape on the SHMR and fur-
ther details on the role of each parameter can be found
in § 2.1 of Paper I.

In contrast to B10, however, we do not model the red-
shift evolution of this functional form. Instead, we bin
the data into three redshift bins and check for redshift
evolution in the parameters a posteriori. We also assume
that Equation 13 is only relevant for central galaxies.

4.2. Scatter between stellar and halo mass

The measured scatter in stellar mass at fixed halo mass
has an intrinsic component (noted σi

logM∗

), but also in-
cludes a stellar mass measurement error due to redshift,
photometry, and modeling uncertainties (noted σm

logM∗

).
Ideally, we would measure both components but unfortu-
nately we can only constrain the quadratic sum of these

3 Scatter is quoted as the standard deviation of the logarithm
base 10 of the stellar mass at fixed halo mass.

two sources of scatter. Nonetheless, given a model for
σm

logM∗

, we could in principle extract σi
logM∗

from σlogM∗
.

Previous work suggests that σlogM∗
is independent of

halo mass. For example, Yang et al. (2009) find that
σlogM∗

= 0.17 dex and More et al. 2009 find a scat-
ter in luminosity at fixed halo mass of 0.16 ± 0.04 dex.
Both Moster et al. (2010) and B10 are able to fit the
SDSS galaxy SMF assuming σlogM∗

= 0.15 dex and
σlogM∗

= 0.175 dex respectively. However, these results
are derived with spectroscopic samples of galaxies. In
contrast to these surveys, we expect a larger measure-
ment error for the COSMOS stellar masses due to the
use of photometric redshifts. In addition, since photoz
errors increase for fainter galaxies, we might also expect
that σm

logM∗

(and thus σlogM∗
) will depend on M∗.

To test if the assumption that σlogM∗
is constant has

any impact on our results, we implement two models for
σlogM∗

. In the first case (called “sig mod1”), σlogM∗
is

assumed to be constant (this is our base-line model). In
the second case (called “sig mod2”), we explicitly model
σm

logM∗

to reflect stellar mass measurement errors. Note
that the goal of this exercise is not to perform a careful
and thorough error analysis, but simply to build a realis-
tic enough model to asses whether or not a M∗ dependant
error has any strong impact on our conclusions.

For the sig mod2 model, we consider three contribu-
tions to the stellar mass error budget. The first is called
“model error”: this is measured by the 68% confidence
interval of the mass probability distribution determined
for each galaxy by the mass estimator. It represents the
range of model templates (each with its own M/L ratio)
that provide reasonable fits to the observed SED. This
range is determined both by degeneracies in the grid of
models used to fit the data, as well as by the photometric
uncertainty in the observed SED. The second term is the
photo-z error, which derives from the uncertainty in the
luminosity distance owing to the error on a given photo-
metric redshift. The final component is the photometric
uncertainty from the observed K-band magnitude, which
translates into an uncertainty in luminosity and therefore
stellar mass. The total measurement error, σm

logM∗

is the
sum in quadrature of these three sources of error. The
results are shown in Figure 4 for the three redshift bins.

As detailed in § 5, however, we find that our re-
sults are largely unchanged, regardless of which form
we adopt for σlogM∗

. This can be explained as fol-
lows. Since the data are binned by M∗, the observ-
ables are in fact sensitive to the scatter in halo mass
at fixed stellar mass, noted σlogMh

. Given a model for
the SHMR, σlogMh

can be mathematically derived from
σlogM∗

. Further details on the mathematical connec-
tion between between σlogM∗

and σlogMh
can be found

 Central occupation function (σlog(M*))

 Satellite occupation function (Bcut, Bsat, βcut, βsat)
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occupation functions for binned samples are trivially de-
rived from the occupation function for threshold samples
via:

〈Ncen(Mh|M t1
∗ , M t2

∗ )〉 = 〈Ncen(Mh|M t1
∗ )〉−〈Ncen(Mh|M t2

∗ )〉
(5)

and

〈Nsat(Mh|M t1
∗ , M t2

∗ )〉 = 〈Nsat(Mh|M t1
∗ )〉−〈Nsat(Mh|M t2

∗ )〉.
(6)

3.2. Functional form for 〈Ncen〉
For a threshold sample of galaxies, 〈Ncen(Mh|M t1

∗ )〉 is
fully specified given Φc(M∗|Mh) according to:

〈Ncen(Mh|M t1
∗ )〉 =

∫ ∞

M
t1
∗

Φc(M∗|Mh)dM∗. (7)

To begin with, let us consider the most simple model
in which σlogM∗

is constant. Because Φc is parameterized
as a log-normal, the central occupation function can be
analytically and conveniently derived from Equation 7
by considering the cumulative distribution function of
the Gaussian:

〈Ncen(Mh|Mt1
∗ )〉 =

1

2

[

1− erf

(
log10(Mt1

∗ ) − log10(fshmr(Mh))√
2σlogM∗

)]

(8)

where erf is the error function defined as:

erf(x) =
2√
π

∫ x

0
e−t2dt (9)

It is important to note that Equation 8 is only valid
when σlogM∗

is constant. In the more general case where
σlogM∗

varies with Mh, 〈Ncen〉 can nonetheless be calcu-
lated by numerically integrating Equation 7. In Paper
II, we will consider cases in which σlogM∗

varies due to
the effect of stellar mass dependant measurement errors.

We note that most readers may be more familiar with
a simplified version of Equation 8 that assumes that
fshmr(Mh) is a power law. We will now describe the as-
sumptions made in order to obtain the more commonly
employed equation for 〈Ncen〉 from Equation 8.

If we make the assumption that fshmr(Mh) ∝ Mp
h and

we define Mmin such that M t1
∗ = fshmr(Mmin) (in other

terms, Mmin is the inverse of the SHMR relation for the
stellar mass threshold M t1

∗ ) then using Equation 8 we
can write that:

〈Ncen(Mh|M t1
∗ )〉

=
1

2

[

1 − erf

(
log10(M

t1
∗ ) − log10(fshmr(Mh))√

2σlogM∗

)]

=
1

2

[

1 − erf

(
log10(M

p
min) − log10(M

p
h)√

2σlogM∗

)]

(10)

If we now use the fact that erf(−x) = −erf(x) and if
we define σ̃logM such that σ̃logM ≡ σlogM∗

/p we find that:

〈Ncen(Mh|M t1
∗ )〉 =

1

2

[

1 + erf

(
log10(Mh) − log10(Mmin)√

2σ̃logM

)]

(11)
which is a commonly employed formula for 〈Ncen〉.
Firstly, it is important to note that Equation 11 is only an
approximation for 〈Ncen〉 for the case when the SHMR is
a power-law and is certainly not valid over a large range
of stellar masses. Secondly, σ̃logM can be interpreted as
the scatter in halo mass at fixed stellar mass if and only if
the SHMR is a power-law and if σlogM∗

is constant. Since
there is accumulating evidence that the SHMR is not a
single power law (and the same is in general true for the
relationship between halo mass and galaxy luminosity),
we recommend using Equation 8 instead of Equation 11.

Figure 2 illustrates the difference in 〈Ncen〉 when Equa-
tion 8 is used instead of Equation 11. At log10(M∗) !
10.2, the functional form for the SHMR has a sub-
exponential behaviour and as a result, 〈Ncen〉 begins to
deviate from a simple erf function. Assuming that Equa-
tion 8 correctly represents 〈Ncen〉, the error made on
Mmin can be of order 10 to 20% at log10(Mmin) ! 12
if Equation 11 is used to fit 〈Ncen〉 instead of Equation
8.

We note that this does not invalidate equation 11 as a
possible parameterization of the central occupation func-
tion. The point we wish to stress is that the common in-
terpretation of the scatter constrained by this parmater-
ization is not proportional to a the scatter in a lognormal
distribution of stellar mass at fixed halo mass.

3.3. Functional form for 〈Nsat〉
In addition to the five parameters introduced to model

〈Ncen〉 and σlogM∗
, we now introduce five new parame-

ters to model 〈Nsat〉. In order to simultaneously fit g-g
lensing, clustering, and stellar mass function measure-
ments that employ different binning schemes, we require
a model for 〈Nsat〉 that is independent of the binning
scheme.

Numerical simulations demonstrate that the occupa-
tion of subhalos (e.g., Kravtsov et al. 2004; Conroy et al.
2006) and satellite galaxies in cosmological hydrody-
namic simulations (Zheng et al. 2005) follow a power law
at high host halo mass, then fall off rapidly when the
mean occupation becomes significantly less than unity.
Thus we parameterize the satellite occupation function
a power of host mass with an exponential cutoff:

〈Nsat(Mh|M t1
∗ )〉 =

(
Mh

Msat

)αsat

exp

(
−Mcut

Mh

)
(12)

where αsat represents the power-law slope of the satellite
mean occupation function, Msat defines the amplitude of
the power-law, and Mcut sets the scale of the exponential
cut-off.

Observational analyses have demonstrated that there
is a self-similarity in occupation functions such that
Msat/Mmin ≈ constant for luminosity-defined sam-
ples (Zehavi et al. 2005; Zheng et al. 2007, 2009; The
SDSS Collaboration et al. 2010), where Mmin is taken
from equation (11) and is conceptually equivalent to
f−1
shmr(M∗), where M∗ is the stellar mass threshold of the
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occupation functions for binned samples are trivially de-
rived from the occupation function for threshold samples
via:

〈Ncen(Mh|M t1
∗ , M t2

∗ )〉 = 〈Ncen(Mh|M t1
∗ )〉−〈Ncen(Mh|M t2

∗ )〉
(5)

and

〈Nsat(Mh|M t1
∗ , M t2

∗ )〉 = 〈Nsat(Mh|M t1
∗ )〉−〈Nsat(Mh|M t2

∗ )〉.
(6)

3.2. Functional form for 〈Ncen〉
For a threshold sample of galaxies, 〈Ncen(Mh|M t1

∗ )〉 is
fully specified given Φc(M∗|Mh) according to:

〈Ncen(Mh|M t1
∗ )〉 =

∫ ∞

M
t1
∗

Φc(M∗|Mh)dM∗. (7)

To begin with, let us consider the most simple model
in which σlogM∗

is constant. Because Φc is parameterized
as a log-normal, the central occupation function can be
analytically and conveniently derived from Equation 7
by considering the cumulative distribution function of
the Gaussian:

〈Ncen(Mh|M t1
∗ )〉 =

1

2

[

1 − erf

(
log10(M

t1
∗ ) − log10(fshmr(Mh))√

2σlogM∗

)]

(8)

where erf is the error function defined as:

erf(x) =
2√
π

∫ x

0
e−t2dt (9)

It is important to note that Equation 8 is only valid
when σlogM∗

is constant. In the more general case where
σlogM∗

varies with Mh, 〈Ncen〉 can nonetheless be calcu-
lated by numerically integrating Equation 7. In Paper
II, we will consider cases in which σlogM∗

varies due to
the effect of stellar mass dependant measurement errors.

We note that most readers may be more familiar with
a simplified version of Equation 8 that assumes that
fshmr(Mh) is a power law. We will now describe the as-
sumptions made in order to obtain the more commonly
employed equation for 〈Ncen〉 from Equation 8.

If we make the assumption that fshmr(Mh) ∝ Mp
h and

we define Mmin such that M t1
∗ = fshmr(Mmin) (in other

terms, Mmin is the inverse of the SHMR relation for the
stellar mass threshold M t1

∗ ) then using Equation 8 we
can write that:

〈Ncen(Mh|M t1
∗ )〉

=
1

2

[

1 − erf

(
log10(M

t1
∗ ) − log10(fshmr(Mh))√
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=
1

2
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h)√

2σlogM∗
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(10)
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we define σ̃logM such that σ̃logM ≡ σlogM∗

/p we find that:

〈Ncen(Mh|M t1
∗ )〉 =

1

2

[

1 + erf

(
log10(Mh) − log10(Mmin)√

2σ̃logM

)]

(11)
which is a commonly employed formula for 〈Ncen〉.
Firstly, it is important to note that Equation 11 is only an
approximation for 〈Ncen〉 for the case when the SHMR is
a power-law and is certainly not valid over a large range
of stellar masses. Secondly, σ̃logM can be interpreted as
the scatter in halo mass at fixed stellar mass if and only if
the SHMR is a power-law and if σlogM∗

is constant. Since
there is accumulating evidence that the SHMR is not a
single power law (and the same is in general true for the
relationship between halo mass and galaxy luminosity),
we recommend using Equation 8 instead of Equation 11.

Figure 2 illustrates the difference in 〈Ncen〉 when Equa-
tion 8 is used instead of Equation 11. At log10(M∗) !
10.2, the functional form for the SHMR has a sub-
exponential behaviour and as a result, 〈Ncen〉 begins to
deviate from a simple erf function. Assuming that Equa-
tion 8 correctly represents 〈Ncen〉, the error made on
Mmin can be of order 10 to 20% at log10(Mmin) ! 12
if Equation 11 is used to fit 〈Ncen〉 instead of Equation
8.

We note that this does not invalidate equation 11 as a
possible parameterization of the central occupation func-
tion. The point we wish to stress is that the common in-
terpretation of the scatter constrained by this parmater-
ization is not proportional to a the scatter in a lognormal
distribution of stellar mass at fixed halo mass.

3.3. Functional form for 〈Nsat〉
In addition to the five parameters introduced to model

〈Ncen〉 and σlogM∗
, we now introduce five new parame-

ters to model 〈Nsat〉. In order to simultaneously fit g-g
lensing, clustering, and stellar mass function measure-
ments that employ different binning schemes, we require
a model for 〈Nsat〉 that is independent of the binning
scheme.

Numerical simulations demonstrate that the occupa-
tion of subhalos (e.g., Kravtsov et al. 2004; Conroy et al.
2006) and satellite galaxies in cosmological hydrody-
namic simulations (Zheng et al. 2005) follow a power law
at high host halo mass, then fall off rapidly when the
mean occupation becomes significantly less than unity.
Thus we parameterize the satellite occupation function
a power of host mass with an exponential cutoff:

〈Nsat(Mh|Mt1
∗ )〉 = 〈Ncen(Mh|Mt1

∗ )〉
(

Mh

Msat

)αsat

exp

(
−Mcut

Mh

)

(12)
where αsat represents the power-law slope of the satellite
mean occupation function, Msat defines the amplitude of
the power-law, and Mcut sets the scale of the exponential
cut-off.

Observational analyses have demonstrated that there
is a self-similarity in occupation functions such that
Msat/Mmin ≈ constant for luminosity-defined sam-
ples (Zehavi et al. 2005; Zheng et al. 2007, 2009; The
SDSS Collaboration et al. 2010), where Mmin is taken
from equation (11) and is conceptually equivalent to
f−1
shmr(M∗), where M∗ is the stellar mass threshold of the



Applying this model to 
Cosmos data



The COSMOS HST survey

HST ACS
Cycles 12 & 13
590 orbits

✔ Weak lensing

Scoville et al. 2007
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Mock catalogs: sample variance and co-variance
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Mock catalogs: sample variance and co-variance
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Results : 
Form and Evolution of the 

Stellar-To-Halo Mass Relation
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Pivot masses: location of the minimum of M200b/M* 
marks the halo mass in which accumulated stellar growth of the 

central galaxy has been the mode efficient

Redshift evolution in the SHMR
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Evolution of the “pivot masses”
We find a downsizing evolution for the pivot stellar mass, and the pivot halo 

mass.  The pivot ratio however remains constant.
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~ 0.25 dex

Moster et al 2010 do not account 
for these errors. Behroozi et al 
2010 do account for these errors

The evolution of 
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leaves the pivot 
ratio constant



Evolution of the “pivot masses”
We find a downsizing evolution for the pivot stellar mass, and the pivot halo 

mass.  The pivot ratio however remains constant.
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Stellar growth versus halo growth
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The relative growth of the stellar mass has been stronger 
than the growth of the dark matter: λM* > λMh 

•  Halo mass has grown by a 
factor of λMh :

Mh(tlow) = λMh x Mh(thigh)

• Stellar mass has grown by a 
factor of λM*:

M*(tlow) = λM* x M*(thigh)

λM* = (η0/η1) x λMh 
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Total stellar content as a function of halo mass

Centrals dominate the total stellar content 
at Mh < 2x1013 Msun

Satellites dominate the total stellar content 
at Mh > 2x1013 Msun

Also see Conroy and Wechsler 2009

At Mh < 1012 Msun: stellar growth 
outpaces halo growth 

At Mh > 1012 Msun: halo growth outpaces 
stellar growth (smooth accretion)

Critical halo mass
Tcool>Tdyn



• growth ~ 22 Msun yr-1

•  3.2 Gyr between bins

•λMh ~ 1.34

A rough calculation of λM* and λMh 

Noeske et al. 2007

A halo of 2x1011 Msun hosts a central galaxy of M* ≈1010Msun

• SFR ~ 2-7 Msun yr-1

•  3.2 Gyr between bins

•λM* ~ 2-3

Halo growth rate :

Fakhouri et al. 2010

Star formation rate :



Using this naive calculation :
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The most simple evolution scenario
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Fixed halo mass (Mq) above which star formation
 is quenched

log(halo mass)
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 for Mh<Mq
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Does not produce downsizing
in the pivot quantities



Evolving pivot mass (Mq) above which star formation
 is quenched

log(halo mass)
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Can produce downsizing
in the pivot quantities

But does not necessarily 
produce a constant pivot ratio



Fixed (M*/Mh) limit above which star formation
 is quenched

log(halo mass)
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 for Mh<Mq
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(M*/Mh)crit A critical pivot ratio, 
coupled with λM*>λMh 

naturally leads to 
downsizing

Still need maintenance 
mode feedback to 
prevent growth in 
higher mass halos



Evolution of the “pivot masses”

Pivot halo mass Pivot stellar mass Pivot ratio

The mechanism(s) that regulate the quenching 
of star formation may have a physical 

dependance on M*/Mh and not simply on Mh
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Disk instabilities : if the mass of the disk dominates the gravitational 
potential, the system is unstable to perturbations. 

AGN feedback       a) halo of hot gas to which AGN jets can 
couple b) a sufficiently large BH to offset cooling in the halo

Mechanisms that might depend on M*/Mh ?

Vmax/(GMdisk/Rdisk)0.5 < 1 

From A.Benson

• M*/Mh=1/27       Lheat=37 × Lcool

• uncertainties in fgas, ε, ...
others ??

Speculative !!

Lheat/Lcool ≈ 103(Δ/200)-1/3(Ωm/0.25)-1/3(fgas/0.15)-1(τcool/Gyr)
(Mh/1012Msun)-2/3(ε/0.01)(M*/Mh)

Efstathiou et al. 1982



The link between halo and stellar-mass
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                           Summary                                              

We have build a method to combine galaxy-galaxy 
lensing, galaxy clustering, and number densities into a 
more robust probe of the galaxy-dark matter connection

We have applied this technique to the COSMOS field and 
studied the SHMR from z=0.2 to z=1.0

We find a downsizing behaviour for the “pivot masses” 
but the “pivot ratio” remains remarkably constant

This coincidence raises the intriguing possibility that the 
quenching of star-formation may have a physical 
dependance on Mh/M* 



Work in Progress and future plans

Calculation of the total amount of stars locked up in 
galaxies, implications for the baryon fraction in groups

Comparison between HOD models and abundance 
matching methods

Comparisons with semi-analytic models such as Galacticus 
with A. Benson

Application to larger data sets (e.g. BOSS, HSC)

Cosmology and GR tests


